پیشبینی دبی اوج در نقاط پایین دست با استفاده از داده های ایستگاههای بالادست به کمک شبکه عصبی (مطالعه موردی: طالقان)
نویسندگان
چکیده مقاله:
در برخی موارد ممکن است ایستگاه هیدرومتری پاییندست منطقه به دلایلی تخریب شده باشد و دانستن دبی در پاییندست منطقه ضرورت داشته باشد، در این مواقع میتوان با استفاده از اطلاعات موجود و یا دادههای ایستگاههای بالادست، دبی در ایستگاه پاییندست را پیشبینی کرد. در این تحقیق دبی اوج در ایستگاه گلینک واقع در خروجی حوزه آبخیز طالقان با استفاده از شبکه عصبی مصنوعی در دو حالت پیشبینی شده است. در حالت اول از آمار گذشته ایستگاه، شامل دبیهای متوسط حداکثر روزانه و بارشهای متناظر، یک روز و پنج روز قبل، مجموع بارندگی پنج روز و دمای میانگین ماهانه استفاده شد و در حالت دوم آمار فوقالذکر در واحدهای هیدرولوژیک گتهده، مهران، علیزان و جوستان و همچنین پارامترهای فیزیوگرافی مساحت، ارتفاع متوسط، طول آبراهه اصلی و شیب متوسط نیز به مدل افزوده شدند. نوع شبکه مورد استفاده شبکه عصبی پیشخور دو لایه با الگوریتم پسانتشار بود که دادهها طی سه مرحله آموزش، اعتبارسنجی و تست گردیدند. نتایج حاکی از آن است که پیشبینی دبی اوج با استفاده از ایستگاههای بالادست و پارامترهای فیزیوگرافی بهتر از پیشبینی دبی با استفاده از اطلاعات سالهای قبل در پاییندست ایستگاه میباشد.
منابع مشابه
پیش بینی دبی اوج در نقاط پایین دست با استفاده از داده های ایستگاه های بالادست به کمک شبکه عصبی (مطالعه موردی: طالقان)
در برخی موارد ممکن است ایستگاه هیدرومتری پایین دست منطقه به دلایلی تخریب شده باشد و دانستن دبی در پایین دست منطقه ضرورت داشته باشد، در این مواقع می توان با استفاده از اطلاعات موجود و یا داده های ایستگاه های بالادست، دبی در ایستگاه پایین دست را پیش بینی کرد. در این تحقیق دبی اوج در ایستگاه گلینک واقع در خروجی حوزه آبخیز طالقان با استفاده از شبکه عصبی مصنوعی در دو حالت پیش بینی شده است. در حالت ا...
متن کاملتخمین دبی اوج سیلاب و حجم رواناب رگبار با استفاده از شبکه عصبی- فازی تطبیقی (مطالعه موردی: حوزه آبخیز کسیلیان)
Prediction of flood peak discharge and runoff volume is one of the major challenges in the management of watersheds. The present study was carried out to estimate event flood peak discharge and runoff volume using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) in Kasilian watershed, Iran. For this purpose, 15 rainfall characteristics were considered for 6...
متن کاملبازسازی دبی روزانه با استفاده از روش های شبکه عصبی و فازی- عصبی(مطالعه موردی: سرشاخه های حوزه آبخیز کارون)
برای برآورد دبی روزانه در مدلهای هیدرولوژی نیاز به دبیهای پیوسته در بازه زمانی روزانه هست. تعداد سالهای آماری متفاوت، نواقص آماری و خطای اندازهگیری باعث ایجاد سریهای زمانی با پایه زمانی غیرمشترک میگردد. بنابراین بازسازی دادههای دبی روزانه از اهمیت ویژهای برخوردار است. این تحقیق بهمنظور بازسازی دبی روزانه در یکی از سرشاخههای رودخانه کارون و در دو مرحله انجام گرفت. در هر دو مرحله تحقیق ...
متن کاملپیشبینی سیل با استفاده از شبکه عصبی مصنوعی و رگرسیون چندمتغیره غیرخطی (مطالعه موردی: طالقان)
با توجه به کمبود ایستگاههای اندازهگیری در کشور، لزوم استفاده از مدلهای تجربی برآورد دبی حداکثر لحظهای بسیار ضروری است. در این پژوهش از دو مدل شبکه عصبی و رگرسیون چندمتغیره غیرخطی برای پیشبینی دبی اوج در حوزة آبخیز طالقان استفاده گردید. با استفاده از آمار دبیهای متوسط حداکثر روزانه و بارشهای متناظر، یک روز قبل و پنج روز قبل و مجموع بارندگی پنج روزه و همچنین دمای میانگین ماهانه در واحدهای...
متن کاملمقایسه کارایی روشهای نروفازی، شبکه عصبی مصنوعی و مدلهای آماری در تخمین رسوب معلق رودخانهها(مطالعه موردی: بالادست حوضه طالقان)
برآورد دقیق میزان رسوب معلق رودخانهها از مسائلی مهم در طراحی مخازن، آلودگی دریاچهها، طراحی کانالها و لایروبی آنها بعد از سیلابها، تعیین خسارتهای ناشی از رسوبگذاری و تعیین تأثیرات مدیریت آبخیز است. روشهای متعددی بهمنظور برآورد بار معلق رودخانهها وجود دارد. یکی از این روشها، که در حل مسائل مختلف هیدرولوژی رسوب و پیشبینی آن کاربرد زیادی دارد، روشهای نوروفازی و شبکههای عصبی مصنوعی است. ...
متن کاملپیش بینی سیل با استفاده از شبکه عصبی مصنوعی و رگرسیون چندمتغیره غیرخطی (مطالعه موردی: طالقان)
با توجه به کمبود ایستگاه های اندازه گیری در کشور، لزوم استفاده از مدل های تجربی برآورد دبی حداکثر لحظه ای بسیار ضروری است. در این پژوهش از دو مدل شبکه عصبی و رگرسیون چندمتغیره غیرخطی برای پیش بینی دبی اوج در حوزة آبخیز طالقان استفاده گردید. با استفاده از آمار دبی های متوسط حداکثر روزانه و بارش های متناظر، یک روز قبل و پنج روز قبل و مجموع بارندگی پنج روزه و همچنین دمای میانگین ماهانه در واحدهای ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 9 شماره 1
صفحات 96- 100
تاریخ انتشار 2013-07-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023